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In 1985, I built a frequency counter kit as part of a national electronics competition.  The design was 
based on an article in the now defunct 73 magazine and was centered on an LS7030 frequency counter 
chip.  While the project cut some corners for cost and simplicity, the result was a surprisingly useful 
piece of test equipment.  Until recently, it was my only frequency counter, and I still regard it as a useful 
addition to my test equipment suite. 
 
One of the corner-cuts was that the 10MHz reference oscillator was very simple.  The design in the 73 
magazine article went to great lengths to stabilize the 10MHz reference oscillator, but the contest project 
offered no temperature leveling or compensation.  Recently, I decided to improve the accuracy of the 
instrument, so I added a temperature compensated oscillator that I had happened across at a good price. 
 
While this worked well, I was intrigued at the prospect of having a reference slaved to GPS.  The 
promise of these instruments is that they closely approach atomic standards, but require much less 
overhead and cost.  Most importantly, a GPS slaved oscillator can be (somewhat) self-monitored so that 
the accuracy can be established and reported in real time.  There are limits to the accuracy, of course, but 
as I discovered, 100 ppb or better accuracy can be achieved with relative ease. 
 
Essentially, the effort involves constructing a PLL circuit that locks a local VCO to the timing output of 
a GPS receiver.  Of course, the choice of GPS is not a trivial one.  Some of the first amateur designs for 
a disciplined oscillator were based on the Rockwell/Conextant Jupiter GPS receiver.  This receiver 
features a 10 KHz reference output.  While most GPS receivers provide a 1Hz reference output, locking 
a local VCO to a 10 KHz reference is simpler, and can be achieved with a handful of CMOS logic 
devices and a decent quality VCO. 
 
A 1Hz reference requires more logic to lock a 10MHz reference, and has a much longer loop filter time 
constant to get a first-order lock.  This is generally not a significant issue except that at long time 
constants, the discharge path for the loop filter starts to dominate.  This includes stray circuit resistances 
and the input resistance to the VCO.  At integration rates of 1 second, the degree of discharge in the loop 
filter can approach 1 ppm for a 3.3V VCO input. 
 
The difference between 10 KHz and 1 Hz references represents a trade-off scenario.  The choice 
between the two boils down to the following: 

• Overall accuracy 

• Circuit complexity 

• Availability of components 
 
While the 10KHz reference offers simplicity, the timing accuracy is generally not as good as with some 
1 Hz options.  In the case of the Jupiter GPS, it is specified to maintain between 300µs and 1 ms of 
timing accuracy (while the timing version of these receivers offers better accuracy, they can be more 
difficult to find).  This equates to a frequency error of about ±3 KHz for a 10 MHz timebase, or about 
300 ppm (assuming a PPS accuracy of 300µs).  On the other hand, the Trimble Resolution-T GPS 
provides a ±20 ns timing accuracy for the PPS output which results in an accuracy of about ±0.2 Hz for 
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a 10 MHz timebase, or about 20 ppb.  The Resolution-T also offers a quantization error value that is 
updated for each PPS pulse.  This error value can be used to refine the phase error detector result to 
obtain accuracies that approach the thermal limit of the VCO stability.  In truth, the PPS accuracy 
limitations of non-timing GPS receivers can be mitigated by averaging the phase error results over 
several minutes.  This has the result of filtering the phase jitter induced by the PPS accuracy allowing a 
better time-base lock than might be obtained otherwise. 
 
Finally, while the 1Hz PLL is more complicated to implement, this can be mitigated by using a medium 
scale CPLD to contain the majority of the PLL logic.  The addition of a microcontroller also simplifies 
the hardware design.  While the microcontroller adds software to the mix, the complexity is still low due 
to the slow process time – this allows the use of low-cost microcontrollers to accomplish the task.  For 
the Resolution-T, the microcontroller is required anyway since the fine timing alignment needed to 
improve on the 500 ppb base-accuracy level is only available via serial connection to the GPS. 
 

What is all this “Parts per whatever stuff, anyhow?” 
 
For those not familiar with the ppm (parts-per-million) and ppb (parts-per-billion) terms, this short 
discussion might help.  Percent is essentially parts-per-hundred and is employed quite often in everyday 
life.   You take a quantity, divide it by the maximum quantity for a given situation, and multiply by 100 
to get percent.  ppm and ppb work the same way, only for ppm, multiply by 1,000,000  (106) and for 
ppb, multiply by 1,000,000,000 (109).  To convert from ppm or ppb, the process is simply reversed.  For 
a 10 MHz oscillator, 20 ppb relates to frequency error by the following: 10 MHz * 20 ppb / 109 = 
0.2 Hz.  Generally, “parts-per” values are listed as numbers greater than 1, although this isn’t a hard 
rule.  Thus, a 0.2 ppm value is the same as 200 ppb, but the ppb form is preferred since it relates a root 
value greater than 1. 
 
A Basic PLL 
 
The PLL needed for this project is not terribly complicated and follows the basic PLL architecture for 
digital divide-by-N PLLs.  Other than the fact that it features a fixed N division ratio, it has no other 
special requirements.  As such, a commercial PLL chip could be employed to accomplish the task.  
However, I decided to use a DAC to drive the VCO which meant that I would need to digitize the output 
of the phase comparator so that it could be integrated and converted to DAC settings.  I decided to use a 
CPLD to create the N divider and phase comparator if only to have an excuse to create a CPLD design.  
I had Lattice tools already and had toyed with some Mach4000 parts in the not too distant past, so there 
wasn’t much learning curve involved. 
 
In the middle of the CPLD design, I decided that I wanted to measure the phase error digitally using the 
CPLD rather than trying to digitize the analog output of the phase comparator with a pulse-width or A/D 
measurement.  The CPLD had sufficient logic available, so it made sense.  There wasn’t enough logic to 
allow serial output of the phase error, so that had to be accomplished in parallel form.  The CPLD was 
getting pin-challenged, so the error value was broken up into two halves to reduce the pin count needed.  
The result is the schematics of Figures A1 through A3.  Figure A1 shows the N divider and a phase-
frequency comparator.  Figure A2 is the phase error accumulator (PEA).  Figure A3 is the UART 
routing switch logic. 
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The phase-frequency comparator is only partially used.  While “dead-code” is generally not a good idea 
for software or hardware, I left it in place since it might come in handy at some point and having it there 
already would mean I could keep the CPLD programming tools at bay. 
 
The reset circuit features a synchronizer so that the N divider is readily synchronized to the reference 
input from the GPS to start a phase measurement.  This significantly reduces lock times when the system 
is in acquisition mode and allows phase error measurements to remain within the ±511 range limit of the 
PEA counter. 
 
The PEA is simply a gated counter that measures the pulse width of the phase comparator (EOR) output.  
A sign detection circuit produces a logic “1” or “0” depending on which rising edge occurs first, the N 
divider or the GPS reference.  The counter is 9 bits wide and can be clocked by either the VCO or by the 
microcontroller SYSCLK.  By choosing SYSCLK to be a higher frequency than the VCO, this allows 
for greater phase error resolution when the system is stabilized.  With the VCO as the PEA clock source, 
each PEA word gives ±255 ppm of error range, with about 500ppb/lsb resolution.  With an 80 MHz 
clock source, the range decreases to about ±64ppb of error range, with about 12.5 ppb/lsb resolution. 
 
The PLL thus constructed consists of the fixed-N divider (N = 10E6) and PEA counter.  The 
microcontroller reads the PEA when RDY goes low and uses the signed error value to determine how to 
adjust the VCO control voltage to drive the VCO towards the GPS reference.  The current architecture 
takes a PEA reading, then resets the PEA counter.  This requires another PPS cycle to synchronize the 
PEA to the PPS signal and results in a new PEA value every 2 seconds.  However, another approach 
would be to allow the PEA to run for several seconds to get better resolution.  Since each PEA reading 
will have 1 lsb of uncertainty, adding up multiple readings that are close to zero adds up the uncertainty 
which greatly dilutes the average value that results.  If the per-PPS PEA is less than about 10, the 
register can accommodate up to 50 seconds of run time. 
 
Taking the resulting PEA divided by the run time results in a single LSB of uncertainty whereas taking 
25 readings over the same time period results in 25 lsbs of uncertainty.  Currently, the PEA is sampled 
10 times over a 20 second period.  It was relatively easy to modify the code to allow the PEA to run for 
20 seconds, then take a single PEA reading and dividing by 20 to get an average PEA value with a 
greater level of certainty. 
 
The VCO 
 
There are a number of VCOs available that could be used for this project.  I chose a FOX VCO based 
mostly on cost and availability.  The jitter performance was reasonable, but it is not temperature 
compensated.  I was originally unconcerned with temperature drift thinking that the device will be 
operated in a lab environment with reasonable temperature consistency and the PLL would compensate 
for any drift that might crop up.  However, after considering this further, a long loop filter time constant 
could prevent the PLL from keeping up with short term drift.  I had already constructed the VCO 
components, but decided that I could oven-ize them relatively easily with a PTC thermistor-heater and 
some insulating material.  I located a 40ºC device and constructed a heat-spreader and clip to hold it in 
place.  I also decided to add an I2C temperature sensor to the VCO so that I could have the 
microcontroller monitor the system to determine when thermal equilibrium had been reached. 
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Figure A4 illustrates the overall schematic of the main clock circuit card.  The VCO consists of a 
precision voltage reference, a 12-bit i2c DAC, and a VCXO.  The FOX device features a 50ppm/V Vc 
input that is centered at 1.65V (Vcmax = 3.3V).  While the Vc input is not linear over the entire 0-3.3V 
swing, it is rather linear over a ±1V swing centered at 1.65V.  For the DAC side, 1 LSb is about 806µV 
which equates to about 40 ppb/lsb. 
 
The Enclosure 
 
I used a Bud chassis and a prototype PWB that I had previously designed for the SiLabs C8051F360 
microcontroller.  I wanted to have a distribution output panel and decided to provide individual control 
switches for each output.  This would allow the outputs to be disabled when not used rather than 
terminating them with terminators.  I fabricated a module for the switches and distribution amplifiers 
and another module for the front-panel status LEDs and COM port selection switch.  The chassis fit the 
form-factor of my contest-frequency counter rather well, so I simply configured it to attach to the top of 
the counter.  This was the prime destination for the reference anyway, and would allow me to piggy-
back on the power infrastructure of the counter, saving some power supply overhead.  Figures A5 and 
A6 illustrate the chassis configuration. 
 
The Diversion 
 
After much assembly work, I finally had the major pieces ready for integration testing.  As a simple and 
quick test, I simply coupled the counter's reference oscillator (the newly minted GPS reference) back to 
the counter input.  It dutifully displayed 10MHz.  However, after a few minutes, the reading began to 
INCREASE!  The amount of offset was considerable, reaching as much as 14 MHz after 15 minutes.  
Not only was this behavior disturbing, it was also very perplexing since the counter should have read 
10MHz no matter what the reference oscillator frequency might be.  Even if it was unstable, it should 
always read exactly 10MHz when connected in this fashion. 
 
I observed the reference and noted that it wasn't particularly remarkable.  In the process of probing the 
circuit, I also discovered that capacitive loading on the input to the frequency counter prescaler would 
correct the issue.  Furthermore, freeze spray on the prescaler would temporarily correct the problem.  I 
wondered why I had never seen this problem before, but then realized that I had never performed this 
test before. 
 
I was at a loss as to how to proceed.  The prescaler, an Intersil 11C90, went out of production many 
years ago with no clear replacements to choose from.  If this wasn't a defective prescaler (and I was not 
yet convinced that it was defective), that wouldn't fix the problem anyway.  Still, I was able to locate 
some 11C90 devices and purchased 4 of them just in case.  They were located in China, so it would take 
a few days to get here.  In the meantime, I decided to work on the Frequency counter. 
 
I had already started to modify the counter to add a TCXO and replace the power switch so making 
changes was not an esoteric problem.  After leaving the counter on for a few hours, I was struck by how 
warm it became.  Of course, this mostly due to the linear power supplies and the transformer from the 
original design.  I had already decided to use a small switcher for the GPSlave but now decided that I 
would also replace the original transformer-rectifier-linear supply for the counter with a 120VAC to 
12VDC switcher and a 5V buck-switcher.  I also wanted to add a pre-amplifer to the low-Z input 
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(hoping that this would both improve the sensitivity and cure the wonky count issue) and some other 
improvements.  The overall list soon grew to the following: 
 

• Upgrade the power supply – the GPSlave power should always be on, the counter supply is 
controlled by the front-panel power switch. 

• Replace the fixed power cord with a Euro-DIN power connection – Hard-wired power cords are 
a real pet-peeve of mine. 

• Configure the internal connections so that the different panel sections can be completely 
separated for re-work or repair. 

• Replace the front-panel BNC jacks with rear-mount bulkhead connectors.  This allows the circuit 
cards to be separated from the front-panel without de-soldering the connectors.  This also greatly 
improves the match and shielding for VHF/UHF signals. 

• Convert the reference output jack to rear-mount bulkhead crimp connector (better shielding). 

• Clean the 30 year-old rosin-flux residue from the circuit cards. 

• Add an auxiliary rear-panel bulkhead connector for the 10MHz TCXO that will be otherwise 
unused. 

• Add an MMIC pre-amp to the low-Z counter input. 
 
After completing the pre-amp, the original frequency error was no longer observed.  A check of the 
sensitivity yielded a figure of about 55mV (about -12 dBm).  While not screaming, 55mV is a useable 
figure of merit and further efforts to improve it in the near-future are unlikely.  This allows the GPSlave 
effort to resume with the next step being to replace the 12 bit DAC with a 16 bit device. 
 
I had originally decided that 12 bits would provide sufficient resolution, but the early integration tests 
showed that a 12 bit DAC would require the system to dither by a considerable amount.  The added 
resolution of the 16 bit DAC would reduce the impact of the dithering and would be easier to 
accomplish now before the insulation cube was constructed for the VCO/DAC circuit. 
 
Once this is complete, the last hardware bits are the distribution panel, RS-232 connection cable, and 
painting the outside of the enclosure flat-black to help reduce thermal transfer out of the enclosure. 
 
The First Full-Up testing 
 
The first tests with the assembly in its final configuration were promising.  I was able to plot the VCO 
temperature vs. time with and without the 40C PTC heater.  I also soldered a type K thermocouple to 
one of the edge metallization terminals of the VCO to get a comparison of the VCO case temperature 
against the temperature sensor that is attached to the top of the VCO. 
 
The VCO temperature sensor is an I2C type in an SOT package and was attached to the VCO with a 
best-compromise approach.  I fabricated a small die of 0.024” thick FR-4 and carved a circuit pattern to 
accept the SOT-23-6 package of the sensor. By removing the minimum copper from the die, I hoped to 
minimize the thermal resistance between the bottom of the FR-4 and the sensor die.  The FR-4 die was 
then epoxied to the top of the VCO and the power and I2C connections were attached. 
 
Comparisons of instantaneous measurements of the VCO case and top sensor showed a difference of 
about 1ºC with the heater off, and about 2.5ºC with the heater on.  This could be due to a calibration 
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difference or actual temperature gradient.  A test with the VCO power removed would be required to 
establish the calibration differential.  It is likely that the gradient dominates, however. 
 
The first overnight plot of VCO temperature vs. time shown in Figure 1 illustrates a cyclic variation of 
about ±0.3ºC with a period of about 25 minutes.  I was perplexed by this phenomenon, but couldn't think 
of any likely suspects.  The second overnight test, Figure 2, exhibited the same cyclic variation, but 
during this test, I was manually taking data from the K-thermocouple (since currently I don't have a way 
to automate this instrument) and was able to correlate the likely source of the variation.  I noticed that 
my HVAC system (currently in cool mode) was triggering a slight reduction in the temperature readings.  
I noted the period of the HVAC system activation and was able to closely correlate the period of the two 
systems. 
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Figure 1.  VCO Temperature vs. time (heater = ON). 
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Figure 2.  VCO Temperature vs. time (heater = OFF). 
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Figure 3.  Case Temperature and phase error vs. time (heater = ON). 
 
 
Figure 3 illustrates the interaction of the VCO output with the GPS 1PPS (a fixed value of 70 was added 
to the PEA reading to allow the two plots to share the same axis).  As the plot shows, the VCO 
frequency variation vs. the PPS output shows a change of about 1.5 PEA units (about 150 ppb) of 
variation over the temperature excursion provided by the HVAC operation.  The external temperature 
variation was measured at about 3°C (max to min) which indicates that the approximate tempco of the 
system is in the 50 ppb/°C range.  There is about a 30 to 60 second lag between the VCO sensor reading 
and the PEA effect, which will limit the effectiveness of any temperature compensation efforts when the 
external temperature is changing quickly.  Also, the system will need to be characterized at around 15°C 
and 35°C to get better numbers for the thermodynamic behavior at these temperatures.   It is clear from 
these measurements that any effort to reach the 20 ppb base-accuracy limit of the PPS output will 
require either improvements to the VCO system insulation, a comprehensive temperature compensation 
algorithm, or a combination of the two. 
 
 Initial Software Configuration 
 
The initial software effort was geared towards getting basic systems in place (UART, timers, I2C, etc…) 
and tested.  This produced a very simple command line interface that allowed the DAC to be adjusted 
and the system parameters (PEA, DAC, and system variables) to be displayed periodically.  While this 
allowed the control loop to be manually maintained, it did not provide for any automatic adjustments.  
With the basic systems in place, it was time to consider how to architect the control loop. 
 
I am a big fan of state machines.  While I concede that I probably over-use them, they allow multi-
thread control with relatively simple coding structures.  With this approach in mind, I envisioned two or 
three state machines to drive the primary control loop, as well as the temperature compensation loop and 
the GPS serial communications loop. 
 
The UART control provides for 3 distinct UART configurations, µC<->PC, GPS<->PC, and 
µC<->GPS.  These three UART modes are cycled by pressing the pushbutton on the front panel.  After 
considering the mechanics of gathering data from the GPS and sending log data to the PC, I decided to 
add a fourth mode (called “auto”) that would handle the situation where the system could access both 
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devices automatically.  After much consternation and gnashing of teeth, I was able to get the UART 
switch to behave. 
 
It was at this point that I began to re-think the modes.  I wasn't convinced that I would implement the 
quantization error correction algorithm, but that also implies that I wasn't giving it up either.  In order to 
implement the algorithm, the system would have to continuously capture GPS data to be sure that the 
quantization error value would be captured for each PEA value captured.  Since the log output to the PC 
was considered an important function, a direct conflict is the result: The system needs to constantly 
receive GPS data, and periodically send log data to a PC.  Fortunately, there are two aspects that 
mitigate this conflict: 1) The two resources are opposite in direction of data flow.  2) The CPLD handles 
the UART switching function and can be easily modified to include a state where the µC<-GPS 
connection and the µC->PC connections are simultaneously established.  The primary drawback to this 
is that it will no longer be possible to enter user commands while in the “auto” mode.  This is mitigated 
by the fact that the front panel switch will still allow the user to switch to µC<->PC mode to issue user 
commands. 
 
The last requirement for the mode switching is to establish a 5 s delay for the GPS<->PC mode.  This 
allows the modes to be cycled without having to encounter bursts of GPS data as the mode passes 
through the GPS<->PC state. 
 
Advanced Software Configuration 
 
Once the basic resources were established, the more advanced loop structures could be addressed.  My 
first effort was to establish a simple tracking loop for the VCO control voltage.  By averaging PEA 
values and applying a simple proportional feedback equation, it was possible to get better than 1 ppm 
phase-lock within a few minutes of GPS acquisition.  A two-level approach was used to apply the 
average over a shorter period when the phase error was over 5 ppm out (100 s was used) and a longer 
time average, 600 s, when the phase error was better than about 3 ppm.  This worked well, but was 
plagued by the temperature-dependence of the VCO circuit.  If the phase lock is able to compensate for 
fast temperature changes, then it is running on a time constant that is too fast go smooth any GPS 
discontinuities. 
 
I captured some long baseline data which allowed me to relate the DAC setting (as driven by the 
proportional loop) to VCO temperature.  I was able to plot a temperature coefficient line vs. 
temperature.  This showed a non-linear relationship of the slope of temperature vs. DAC.  I also logged 
with the PTC heater turned off and noticed that the crystal T/C curve must peak somewhere between 
38°C and 68°C.  In the 70°C range, the changes in DAC setting oppose small changes in temperature – 
if temperature rises, the DAC setting falls.  However, in the 38°C range, the DAC follows the changes in 
temperature.  This is interesting in that it suggests that any open-loop compensation implementation will 
only work over a narrow temperature range. 
 
I have waffled over the compensation question a number of times.  On the one hand, it looks like one 
should be able to apply a compensation scheme that will at least minimize temperature effects and be 
reasonably simple to implement.  However, on the other hand, these compensation schemes are open-
loop and thus are bound to fail in the face of aging effects.  “Why not use PID algorithms?”  
Unfortunately, PID systems are closed loop by definition and this control problem is not closed loop IN 
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TERMS OF TEMPERATURE.  Thus, without a way to measure the frequency of the VCO and use that 
as a process variable into the PID temperature loop, one can not use PID techniques to improve the 
temperature coefficient of the system.  Using the GPS PPS as a frequency reference could allow one to 
implement a PID algorithm, but this limits one to the short term stability limit of the PPS signal, which 
will vary based on the constellation configuration and GPS transient events. 
 
I have located a TCVCXO that appears to be a better VCO candidate.  The cost is only $20 and would 
likely fit into the space occupied by the existing VCO.  This new device in concert with the PTC heater 
(doubling the heaters by adding one on top of the VCO would also improve thermal stability) would 
greatly improve the temperature performance of the VCO sub-system making software compensation 
unnecessary.  This would allow the software to focus on the long-time-constant averaging of the GPS 
PPS signal. 
 
 
 

 
Figure 4.  (Nearly) Finished GPS Disciplined Timebase and VICA contest Frequency Counter. 

 
References 
 
Confessions of a Counter Evolutionary (part 1), D.N. Ellis, WA2FPT, 73, August, 1982 
 
Confessions of a Counter Evolutionary (part 2), D.N. Ellis, WA2FPT, 73, September, 1982 
 
A GPS-Based Frequency Standard, Brooks Shera, W5OJM, QST, July 1998 
 
GPS Disciplined 10 MHz Oscillator, http://www.jrmiller.demon.co.uk/projects/freqstd/frqstd.htm, 
James Miller, G3RUH (web site observed on 8/2/2013) 



© Joseph M. Haas, 8/05/2013, all rights reserved 10 

Appendix A: Figures 
 

 
Figure A1. CPLD N-divider, reset circuit, and frequency detector 
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Figure A2.  CPLD Phase Error Accumulator (PEA) and processor interface. 
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Figure A3.  CPLD UART data switch logic. 
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Figure A4.  GPSlave controller schematic. 
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Photo Gallery 
 

 
 

Front-end amplifier for Frequency Counter 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Thermal image of DAC/VCO with insulator removed 
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Thermal and visible image of GPSlave assembly 

(In thermal image, note reflection of power cable, and others, from bottom of chassis) 
(Insulator, serial cable, and 10MHz out cable all removed for thermal image) 
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Controller CCA top view 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Controller CCA bottom view (CPLD and PTC heater shown) 


